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Birds can experience localized forces against their bodies due to impact
against solid objects (like a branch or another bird) or water (during
plunge-dives or landings). In this study, we hypothesize that densely
packed contour feathers around the bird body would spread localized
impact force while diving and maintaining plumage integrity. To test the
hypothesis, we performed experiments with individual feathers and elastic
beams, and developed a theoretical model to determine the response of
feathers during the dive. First, we used a micro computed tomography scan-
ner to characterize the internal structure of the contour feather from a
northern gannet and calculate Young’s modulus of feathers sampled from
different parts of the body. This value was found to be of the order of
109 Pa for feathers from chest and belly. Second, we model the feathers as
elastic beams taking into account their pre-curvature and non-uniform
cross-section. Results from our experiments with polycarbonate beams
suggest that the interaction of feathers on the skin patch redistributes the
force, thereby reducing the impact on any particular area of the skin. Finally,
a theoretical model of multiple overlaying feathers is proposed to quantify
the spreading of impact force on the skin of the bird body which shows
that the pressure on the skin at the impact point can be reduced by as
much as three times the pressure if feathers had been absent.
1. Introduction
Feathers are known to serve avariety of functions for birds, such as heat insulation
[1], sexual selection [2,3] and, of course, flight [4,5]. In terms of aerodynamics,
flight feathers are a topic of interest for efficient and quiet flying [6]. On the
other hand, some hummingbirds use their tail feathers to produce sounds for
courtship [7,8] owing to morphological specializations of these tail feathers
[9,10]. However, the bird’s body is covered by contour feathers, resolving its
body shape and protecting the thin skin from the environment. The hydrophobic
properties of feathers help to reduce the contact time of impacting rain droplets,
which in turn reduces the loss of heat when it rains [11]. Feathers also show
resistance to water penetration under hydrostatic pressures, which helps aquatic
birds remain dry when diving underwater [12,13]. Thus, the maintenance of the
plumage’s continuous surface is highly important for survival because it protects
the body from thermal and mechanical stresses.

Plunge-diving is a highly specialized foraging behaviour observed in a
number of bird species. Among them, the northern gannet (Morus bassanus) is
an extreme plunge-diver, capable of diving at speeds up to 24m s−1 and reaching
fish at depths between 10 and 20m [14,15]. Plunge-diving birds fly or hover high
in the air before free-falling towards the water. The initial height before the free
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Figure 1. High-speed images of a salvaged, frozen northern gannet impacting water at approximately 4.7 m s−1 [17]. The moment the beak touches the water
marks t = 0 ms (not shown) and the beginning of the impact phase. (a) The air cavity phase, (b) the moment of pinch-off and (c) the submerged phase. (Online
version in colour.)
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Figure 2. Top and bottom image showing the side and ventral view of a
northern gannet. Circled regions show the locations from where feathers
were plucked, i.e. the abdomen, ventral upper thorax and upper back
region. (Online version in colour.)
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fall depends on the depth of prey and the type of prey the bird
is after. During head-first free-fall, the bird will accelerate due
to gravity and hit the water at high speed; if fast enough it will
surprise the prey not giving it a chance to escape.

There are three notable phases during a plunge-dive:
(1) the impact phase, (2) the air cavity phase and (3) the sub-
merged phase [16]. It was shown during the impact and air
cavity phase that the bird’s neck is at greater risk of injury
[17]. While northern gannets typically dive at around
24 m s−1 in nature [14], their hypothetical maximum diving
speed would be up to 80 m s−1 before neck injuries due to
the morphological properties of the skull and strength of
neck muscles [17]. Near the end of the second phase, the air
cavity closes, or pinches off, and the bird’s upper chest at the
shoulder girdle hits water at high speeds (figure 1). This
hydrodynamic impact force is highly localized at the upper-
chest and makes it a potential danger for the bird. However,
due to the elastic coupling of multiple contour feathers, we
hypothesize that the force is spread along the feather pattern,
over amuch larger area of the body, before being transferred to
the skin thus reducing pressure on skin after pinch-off.

Contour feathers make up the plumage around the bird’s
body and could serve a variety of purposes. The elastic prop-
erty of individual feathers has been studied experimentally
[18–26] though few studies have focused on contour feathers
[27,28]. However, the interactions among a collective group of
feathers remain unknown. When one contour feather is sub-
jected to a force, the other neighbouring feathers will be also
affected through a mechanical interaction between feathers in
a cascading effect. Such a collective behaviour cannot be
deduced from the simple behaviour of a single feather.

Bird feathers are composed of β-keratin [29], which is a
protein in a stacked-sheet configuration. However, the reported
values of bird feather elastic modulii have a large range (from
lowest value at approx. 0.045 GPa [30] to the largest values of
approx. 10 GPa [18]) despite their similar chemical compo-
sition. A variety of factors are associated with this range of
values, such as method of testing [18,24,31,32], bird species
[19], feather type (contour, wing, tail) and moisture content
[33]. In order to understand how multiple feathers interact
with each other, one must set the groundwork for the mechan-
ical behaviour and elastic modulus of a single feather for a
given species.

In this present study, we investigate the elastic modulus of
contour feathers with a varying cross section, using northern
gannet feathers as a model specimen. Using a point load, the
mechanical behaviour of individual contour feathers is quan-
tified under bending load conditions. Young’s modulus, E,
was calculated by correlating bending experimental data on
actual feathers with calculations made from the nonlinear
bending equation for pre-curved rods while considering the
varying area moment of inertia. Thereafter, the role of elastic
coupling of feathers in spatial dispersion of force was studied
using artificially fabricated elastic beams.
2. Material and methods
2.1. Materials
2.1.1. Actual gannet feathers
The North Carolina Museum of Natural Sciences, Raleigh, NC,
provided two carcasses of salvaged adult northern gannet birds.
Both birds were collected and handled under Permits 14-SC00218
and MB575148-0. Carcasses were kept frozen for computed
tomography (CT) and feather plucking. One is catalogued at the
Smithsonian NMNH under the specimen number USNM 654219
and the other is still being catalogued. The sex is unknown.

Individual feathers were plucked for material characteriz-
ation. Between seven and ten feathers were randomly taken
from each region of interest: abdomen (belly), ventral upper
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Figure 3. (a) Northern gannet contour feather (from the chest). The calamus is the thick root of the feather which is clamped by the skin. The calamus eventually
tapers into the rachis (which remains above the skin). (b) Different configurations of artificial feathers that are used. (b1) Thickness = 0.127 mm, length≈ 20 mm,
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Figure 4. (a) Feather inside an X-ray invisible tube (Klapton) mounted in the
μCT scanner. (b) μCT-scanned image of the feather. (c) Reconstructed images
of feather cross section. The cortex of the rachis is the white, thin-walled
structure region. Small white dots that eventually appear to the left and
right of the rachis are the barbs and barbules, which are filtered out
during image processing. (Online version in colour.)
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thorax, and upper back region (figure 2). Each feather has two
main parts: (i) the shaft and (ii) barbs. The shaft is composed
of the calamus, which remains embedded in the skin, and the
rachis, which is the portion that protrudes outside of the skin
(figure 3a). Barbs are the thin fibres that branch off of the
rachis, which are collectively referred to as vanes. Each barb
further branches out into even finer structures called barbules.
Barbs that have symmetrical and filamentous barbules, generally
found closer to the calamus, are called downy barbs [34,35].

2.1.2. Artificial feathers
To understand the coupling effect of feathers in an actual feather
patch, we created artificial feathers by using thin elastic beams
made of polycarbonate with a pre-curvature, or having a
curved shape in an unstressed state. The polycarbonate material
used was standard glossy clear polycarbonate sheets; Product#
85585K102 (0.127mm) and 85585K103 (0.254mm) from
McMaster-Carr Co. The different thickness of sheets give differ-
ent area moments of inertia. For further variation in the area
moment on inertia, the artificial feathers were fabricated in differ-
ent shapes as well (figure 3b). The elastic modulus of the
polycarbonate material is measured to be around 1.6 GPa
(using the method outlined in §3.3) which is of the same order
of magnitude as the known value of around 2.0 GPa [36]. The
beams were made by cutting thin strips of the polycarbonate
sheets (of thickness 0.127mm and 0.254mm) of the desired
shapes using a Full Spectrum Laser cutter H-series 20 × 12 or
Sihouette Portrait 2. The pre-curvature was achieved by curling
the beams around a metal shaft and heating them in an oven
at 80°C for a few hours. The beams would then hold their
curled shape after removing from the shaft.

2.2. Methods
2.2.1. Micro computed tomography scan
We scanned all feathers using a μCT scanner (Bruker SkyScanner
1173, source voltage 55 kV, source current 110 μA). The slice thick-
ness ranges between 6.1 and 9.09 μm, depending on the size of the
feather. Generally, with smaller neck feathers, we obtained a res-
olution of around 6.1 μm, and larger feathers from the abdomen
have a resolution of around 9.09 μm. Each feather was placed
inside an X-ray invisible tube (Klapton film tube) during sample
rotation. This helped to prevent the feather from moving during
scans. After reconstruction, we used Matlab’s image-processing
toolbox to extract the cross-sectional area of the feather’s shaft
cortex (the thin-walled region of keratin) along its long axis.
In general, the rachis cross section was oval shaped and the
calamus cross section was circular shaped (figure 4c). During
image processing, barbs and barbules that become visible in the
μCT scans are subtracted out of the image so that the shaft
cortex is the only remaining structure for analysis.

2.2.2. Feather characterization
In order to characterize the bending behaviour of a contour
feather, Young’s modulus was measured using a free-end flexural
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bending test (figure 5). A small cube was made using vinylpoly-
siloxane (Zhermack Co., Elite Double 22) with holes on the top
surface to clamp the feathers in place. After inserting the calamus
into the hole, the base cube was clamped tightly and the bending
force of a single feather was then measured. A clear glass plate,
attached to a force sensor (Futek LSB200; 10 g) and controlled
by a linear stage (Velmex, Inc.), was moved down step-wise,
pushing down on the feather rachis. The force data (measured
directly by the force sensor) and displacement data (from
image analysis using Matlab) result in a force–displacement
curve (figure 6).

Initially, for a few feathers, two separate bending experiments
were performed. For the first one, the experiment was performed
on the whole feather with the vanes intact, while in the second
one, similar tests were conducted after cutting off the vanes with-
out disturbing the rachis (figure 6b). We see that the results
are quite similar (figure 6a), leading us to conclude that the
resistance of a feather against bending deformation mostly
comes from the rachis rather than from vanes. Hence, for sub-
sequent test, the vanes were cut off from the feathers for ease
of post-experimental analysis.

Each feather is subjected to a total vertical displacement of
around 4.5mmwith three cycles. The resulting force–displacement
curves from the three cycles are then averaged.
2.2.3. Multiple feathers: measuring distance between gannet
feathers

Bird contour feathers are densely distributed on the skin at
about 3:7� 105 feathersm�2 (for an arc-length and width of
about 3 cm and 2 cm, respectively). To measure the distances
between feathers, we used the CT-scan slice images to mark
the follicles (feather insertions) (N = 592) on the feather tracts
on the skin (figure 7) using ImageJ (v. 2.0.0). We sampled, at
the mid-length of the neck, the dorsal cervical tract and the
ventral cervical tract; at the shoulder girdle, the caudal
region of the ventral cervical tract and cranial region of the pec-
torosternal tract as the upper-chest region; the pectorosternal
tract as the chest region; and the interclavicular tract as the
back region. In cases where the body was too curved for a
clear image, several images would compose the sampling for
that region. The marking for each feather follicle was used as
centre mark for the distance measurements between feathers
(N = 258). Finally, distances were averaged for each region.
2.2.4. Multiple feathers: physical experiments
The experimental set-up for multiple beams was similar to the
single feather experiment, except in this case, we clamp multiple
artificial feathers (thin polycarbonate beams) in a linear array
with equal spacing between each. This allowed us to precisely
control different parameters and measure the resulting force
response. We used four different types of artificial feathers as
shown in figure 3b. The length is chosen to be close to actual
feather length (Lf = 2.5+0.2 cm for chest feathers). We carry out
experiments with a spacing of 5mm. Force is again applied to
the topmost beam by step-wise pushing it downward with a
glass tip attached to a force sensor. The topmost beam presses
the succeeding beam below it and, in turn, a cascading effect
of force transmission is set up due to the beam pattern (figure
7b). Also, another force sensor is mounted at the base of one of
the beams in the array.

The force reading from the top force sensor for each step
gives the net external impact force on the array of beams, while
the reading from the bottom force gives the force at the base of
the particular beam where it is placed. The corresponding verti-
cal displacements of each of the beams is measured by image
processing using Matlab.
3. Results
3.1. Area moment of inertia
From the μCT scans, we find that the length of the calamus Lc

and rachis Lr varies depending on the region. For the
calamus, Lcback ¼ 3:5+ 0:1 mm (N = 7), Lcbelly ¼ 5:4+ 0:4 mm
(N= 7), Lcchest ¼ 3:6+ 0:5 mm (N= 7), and Lcneck¼ 0:5+0:1mm
(N= 6). For the rachis, Lrback ¼ 24:1+2:8 mm, Lrbelly ¼ 24:9+
0:7 mm, Lrchest ¼ 23:3+1:5 mm and Lrneck¼ 6:6+0:5 mm.
Along the shaft, the cortex’s cross section decreases dramatically
from the calamus to the rachis, and then slowly tapers to the
tip [24,37] (figure 8). The calamus is partly hollow, but
the rachis is filled with the medulla. MacLeod [28] measu-
red the feather’s mechanical characteristics both with and
without the medulla and concluded that it could explain
some changes in stiffness along the shaft and between species.

The area moment of inertia, I, around the axial direction,
i.e. the y-axis in this case, was calculated by considering the
z-plane as the bending plane (figure 10):

I ¼
ðð

S
y2bend dxbend dybend, (3:1)

where ybend is the direction of bending and xbend the orthog-
onal direction for a given cross section S.

Experimental values of I for one chest feather are shown
in figure 8. From the beginning of the rachis to the tip, the
area moment of inertia, I, ranges between 10−15 and 10−
18 m4. Experimental values of I for the back, belly, chest and
neck are shown in figure 9a. Here, we found that the variation
of I along the rachis is significant, which needs to be con-
sidered in the analysis. A general trend of decreasing I is
observed which allows us to assume a fitting function to
describe the I’s for chest feathers as shown in figure 9b. For
the functional form of I, we use the non-dimensionalized
form of the area moment of inertia (denoted as I*(s*)), by
non-dimensionalizing arc length and area moment of inertia
as s* = s/L and I* = I/I0, respectively, where L is the rachis
length and I0≈ 10−15 m4 is the area moment of inertia at the
base of the rachis:

I�(s�) ¼ y1(s�)� c1(s�)þ y2(s�)� c2(s�), (3:2)
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where

y1(s�) ¼ 0:7 exp (�15s�)þ 0:3,

c1(s�) ¼ 1
2
(tanh (�10(s� � 0:51))þ 1),

y2(s�) ¼ 1
2
(tanh (�10(s�� 0:2))þ 1)

and c2(s�) ¼ 1
2
(tanh (10(s� � 0:51))þ 1):

The constants in the above equations were chosen for the best
fit for our experimental data (figure 9b).

The range from s = 0 to 0.004m in figure 9b represents the
calamus part of the feather. Since this part does not affect the
bending dynamics of the feather, we ignore it while obtaining
the fitted function.
3.2. Governing equation for a pre-curved beam
A schematic of the feather in undeformed and deformed
shape is shown in figure 10, where s is the dimensional curvi-
linear arc length axis along the rachis, F0 is the applied point
load, L is the arc length of the rachis from the clamp to the
point where force is applied, Lf is the total arc length of the
rachis, and θ is the angular deflection from the unstressed
position. When the force displaces the feather by ΔY, the
point of contact (or point of load application) also shifts
backward relative to the feather by ΔL.

The rachis is modelled as an elastic, homogeneous, isotro-
pic beam, in which the governing equation of this mechanical
behaviour is given as [38]

d
ds

EI(s)
du
ds

� �
¼ �jF0 � t̂j, (3:3)

where E is Young’s modulus (which is assumed to be con-
stant throughout the rachis), I(s) is the area moment of
inertia, θ is the angular displacement caused due to the
load F and t̂ is the unit vector along the tangential direction
of the rachis. The rachis can be assumed to be more or less
homogeneous along its length, so E is constant. Slight vari-
ations might exist, but such an assumption for simplicity
would result in sufficient accuracy for evaluating an average
E value for studying the bending properties. This equation is
non-dimensionalized by non-dimensional variables s* and I*.
Also, it should be noted that the value of L keeps changing as
the feathers are loaded further, i.e. ΔY is increased (figure 10).
In the unstressed state, the feather has a pre-curvature, which
we will denote as κ. Considering these factors, the final
non-dimensionalized equation may be written as

d2u

ds�2
¼ �dI�=ds�

I�(s�)
du
ds�

� �
� f

I�(s�)
sin (uþ k�s�), (3:4)

where ϕ = (F0 L
2)/(E I0) is a non-dimensional parameter which

incorporates the force and elastic modulus terms and κ* is the
non-dimensionalized pre-curvature, non-dimensionalized as
κ* = κL. We assume the pre-curvature κ to be constant along
the entire rachiswhich ismeasured through cubic spline fitting
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of the images of unstressed feathers. The boundary conditions
are (i) fixed angle at the base of the rachis θ|s*=0 = θ0 and (ii) a
torque-free rachis tip (dθ/ds)|s*=1 = 0. Here, θ0 is measured
from images taken from experiments. Our theoretical
model, unlike previous models [18,19,24,26,28,32], takes into
account the pre-curvature and variation in cross section, and
is consistent even for large deformations.

3.3. Elastic modulus
To calculate the elastic modulus, equation (3.4) is solved
numerically using Matlab’s bvp4c boundary value problem
solver. The solution for θ is solved for by incrementally increas-
ing the value of ϕ (which is a proxy for increasing the applied
force). The rectilinear coordinates for the displaced feather are
calculated as x� ¼ Ð

sin(u) ds� and y� ¼ Ð
cos(u) ds�. Knowing

the values of ϕ and the resulting solution for y* allows us to
determine the simulation’s force-to-E ratio (F/E)sim = I0ϕ/L

2

which gives us a plot of (F/E)sim versusΔY. From experimental
data, we get a plot of Fexp versus ΔY. We compute E values by
comparing the two plots at the ΔY values from experiments as
E = (Fexp/(F/E)sim). Then an average value of E is determined
by simply taking mean of all the E values obtained for the
different ΔY values (as the material of the feather can reason-
ably be assumed to be homogeneous and hence E should
essentially be a constant value over ΔY).

We initially tested this method on curved beams made of
vinylpolysiloxane polymer (Elite Double 22; Zhermack Co.).
We get a value of E = 0.70+0.05 MPa from our method which
is in close agreement with the value (0.95MPa) from the
previous literature [17]. Thus, our method gives a value with
error margin of about 26%. Next, we applied this method on
actual feathers. The results for actual feathers are as below.

The calculated mean value for the rachis Young’s
modulus (E) is 4.84+1.9 GPa for chest feathers (N = 7) and
6.91+2.9 GPa for belly feathers (N = 7). Recently, Bachmann
et al. [24] reported a quite similar value for E, 5.4 GPa from
bending tests, although it refers to flight feathers. Other
previous studies reported between 0.05 [28] and 10 GPa
[18], which are quite different from our value but still of
the same order of magnitude. Detailed comparison is
presented in discussion along with figure 14.
3.4. Interaction of multiple elastic beams
In the linear array of beams, we solve the bending algorithm
for each beam individually, starting from the lowest one and
proceeding up to the topmost one, for each step. Ideally, any
ith beam (where we start numbering from the topmost beam
as i = 1 and increase downward to i = n as the lowest beam) in
the array experiences three forces: one downward force F(i)d
somewhere near the top part of the rachis due to the beam
above it while another upward force F(i)u acts at the tip of
the rachis due to the beam below it and finally a force F(i)b
at the base where its is clamped (figure 11a). The net result
of F(i)d and F(i)u , denoted by F(i)0 (figure 11b), is what causes
the bending, while F(i)b simply balances off F(i)0 . F

(i)
u and F(i)d

can be related as F(i)u ¼ F(i�1)
d .

To simulate the bending of any ith beam in the array, we
concentrate on the part from s = 0 to s = L only. The two forces
on the beam can be effectively represented by just a single
force F(i)0 downward and an additional clockwise moment
M(i)

e , both acting at s = L. The value of M(i)
e is given as

M(i)
e ¼

ðL f

s¼L
(F(i)

u � t̂) ds, (3:5)

which simplifies to M(i)
e ¼ jF(i)u Lmj in the clockwise (positive)

direction. Now, we can use the same governing equation (3.4)
to get a plot of force versus displacement, except with slightly
modified boundary conditions. The new normalized bound-
ary conditions used are (i) a fixed angle at the base of rachis
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θ|s*=0 = θ0 and (ii) torque at s* = 1 formulated as
(du=ds�)js¼1 ¼ �(F(i)u Lm L)=(EIo) (from (3.5)). This again gives
us a force versus displacement plot by varying the value of
ϕ over a reasonable range. We evaluate the force value for
the actual displacement value (obtained from image analysis)
by spline interpolation from the aforementioned plot for the
specific beam for the particular step.

However, the interpolated force value represents F(n)0 . For
the case of the lowest beam (i.e. i = n), we can easily see
F(n)u ¼ 0 as there is no other beam below it to push upward
at the tip. So, F(n)d ¼ F(n)0 . Again, F(n�1)

u ¼ F(n)d , so
F(n�1)
d ¼ F(n�1)

0 þ F(n�1)
u . Thus, this process can be repeated for

all i to find both F(i)u and F(i)d going in reverse from i = n to i =
1. Finally, the force at the base of each beam can be evaluated as

F(i)b ¼ F(i)d � F(i)u : (3:6)

The net external force Fe applied to the beam pattern can
be calculated from the simulation result as

Fext ¼
X

F(i)b , (3:7)

which is also what is experimentally measured using the top
force sensor. For validation of our simulation, we match the
external force values (for each step) obtained fromexperiments
and simulation (figure 12a). Also, we have a second force
sensor at the base of one of the beams to directly measure
the reaction force (figure 12b). This value is also matched
with results got from the simulation for that beam as well.
3.5. Spreading an impact force
We now turn to the estimation of the spreading of the impact
force. Let us consider n feathers organized as in figure 11a.
Let us assume that an external point force Fext is applied on
the first feather at a horizontal distance Lm = αLh from the
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base, where Lh is the horizontal distance from the base to the
tip. Hence, the balance of force and moment at equilibrium
leads to

F(1)b � Fext þ F(1)u ¼ 0 (3:8)

and
M0 � aLhFext þ LhF(1)u ¼ 0: (3:9)

We defineM0 as the moment acting on the base of the first
feather. We have therefore

F(1)u ¼ aFext �M0

Lh
(3:10)

and
F(1)b ¼ (1� a)Fext þM0

Lh
: (3:11)

On the nth feather, we obtain similarly

F(n)b ¼ (1� a)an�1Fext þ an�1 M0

Lh
(3:12)

and
F(n)u ¼ anFext � 1� an

1� a

M0

Lh
: (3:13)

We now derive the number of feathers affected until the
force acting on the tip of the feather vanishes, i.e. F(n)u ¼ 0.
From equation (3.13), we get

n ¼ � 1
log (a)

log 1þ 1� a

M0=Lh
Fext

� �
: (3:14)
Here, the parameters can be estimated based on measure-
ments on our feathers α≃ 0.685+0.004, Lh = 1.55+0.07 cm.
The α and Lh values were evaluated simply by measuring
the distances on the image using ImageJ. Also, the hydrodyn-
amic pressure due to impact can be estimated as Pwater≃
(1/2)(ρwater)(Impact speed)2∼ 300 kPa. We estimate the
moment from an anatomical perspective [39], assuming
that the calamus is maintained straight by muscular
forces FCalamus, proportional to the surface of the calamus
SCalamus≃ 1 mm2. Also, muscles are attached at the base
of the calamus at a depth of 3.8+0.5 mm based on
CT-scanned images. Using a typical force density of muscles
of 6 × 105 N m−2 [40], we get FCalamus � 0:6 N and a moment
at the calamus M0 � 10�3 Nm.

Based on all parameters for actual bird feathers, we expect
a spread of the impact force occurs over n≃ 9 feathers, which



Table 1. Table of previous works and the tested bird species. Some
references do not provide the scientific name of the animal tested, which
are marked as unknown.

reference species

Hertel 1966 unknown

Purslow & Vincent 1978 Columba livia

MacLeod 1980 Larus argentatus

Bonser & Purslow 1995 Ardea cinerea

Dawson et al. 2000 Sturnus vulgaris

Bonser 2001 Cygnus olor
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is about 4 cm. Furthermore, to illustrate that the spatial
spreading of impact force by the presence of feathers
actually reduces the pressure on the skin, we define a unit
cell as in figure 13, having an area (Scell) of 18.24 mm2;
and compare the pressure on it both with and without
feathers. The force on the feather above the unit cell is
Fext ≃ Pwater � Scell � 5:4 N out of which 1.8 N is transferred
to the unit cell on the skin as follows from equation (3.11).
The corresponding pressure on the unit cell in the presence
of a feather is 98 kPa as opposed to 300 kPa without feathers.
Thus, feathers on skin can help to spread the impact force
over a wide area by reducing the pressure by as much as
3 times in the case of northern gannets.
Cameron 2003 swan unknown

Reddy & Yang 2007 chicken unknown

Weiss & Kirchner 2010 Pavo cristatus

Bodde et al. 2011 Ramphastos toco

Bachmann 2012 Tyto alba and Columba livia

Schmitz 2014 Falco peregrinus and Columba livia

and Falco tinnunculus and Accipiter

nisus

present work Morus bassanus

J.R.Soc.Interface
16:20190267
4. Discussion
This study has provided estimates for Young’s modulus of
northern gannet contour feathers through bending stress
tests. The cross-sectional area of the contour feather cortex
is found by using a μCT scanner [41]. From these images,
we find that the area moment of inertia changes by three
orders of magnitude from where the rachis begins to where
it ends. The rachis is modelled as an elastic beam, and by
numerically solving for the displacement of the beam
and comparing the solutions with the experimental force–
displacement curves, the average value found of the contour
feathers was calculated as 4.84+1.9 GPa (N = 7).

The advantage of our method is that it accounts for the pre-
curvatures and a varying area moment of inertia of the feather
in large deformations, which allows us to get an average elastic
modulus for the entirety of the structure that undergoes bend-
ing. Other works cut their feather samples into pieces, which
allow them to apply small deflection bending equations and
consider nearly constant values of area moment of inertia (I).
This allows for calculations of the elastic modulus only in loca-
lized regions of the feather. However, previous works have
shown some variation of the elastic modulus along the feather
rachis [19,30]. Our method is non-destructive (we do not
cut the rachis into smaller pieces), and it provides the overall
mechanical behaviour of the feather.

While the nonlinear bending equation used in this study
has advantages, there are a few assumptions made. Firstly,
the nonlinear bending equation assumes purely elastic defor-
mations, meaning that no energy is lost between load being
applied and the load being removed, so the force–
displacement profile would show a single line between
increasing and decreasing loads. However, we know that
there is hysteresis in the force–displacement profile for the
feather. This is typical of viscoelastic behaviour. Secondly,
the bending equation only considers in-plane bending, and
thereby neglects possible torsion effects. A second camera
that captures any deflections out of plane would help to
mediate this experimentally. However, we assume that out
of plane deflections are very small compared to in-plane
deflections. Thirdly, we assume the feather is a homogeneous
material. The calculated area moment of inertia comes from
only the cortex of the feather. But the rachis is also made
up of some foam material, called the medulla, which may
have an additional effect on the elastic modulus. However,
previous works do not account for the medulla within the
cortex performance per se as it appears to have minimal
effect on the total resistance force [18,24,42].
Figure 14 shows the comparison of E-values from our
study with previous literature; water-dwelling birds are
marked with icons above their respective publication
(though other birds were also tested in those studies). The
large variation in E-values can be explained by different test-
ing methods, bird species (table 1), and the type of feather
used. Generally, Young’s modulus for isotropic materials
should be the same regardless of the testing method. How-
ever, for an anisotropic material like the feather, the
direction of load will affect the resulting Young’s modulus.
Different bird species and feathers may have varying E-
values depending on their function. It seems that wing feath-
ers may benefit from having higher elastic modulii for flight
purposes. It was shown that the elastic modulus for wing
feathers increases from proximal to distal end of feathers,
but ostriches do not show this trend [43]. Additionally,
increasing the humidity in the testing environment shows
decreased values in the elastic modulus [26,33].

Since the northern gannet contour feathers undergo bend-
ing when they dive into water, we are most interested in the
elastic modulus under bending conditions. The closest and
most relevant E-value from other works to the present
study would be MacLeod (1980) [30], which shows an elastic
modulus range of 0.002–1.850 GPa for contour feathers under
bending tests. His study includes chickens, turkeys, pheasant,
and herring gull. For the herring gull, the elastic modulus in
bending is actually around 0.022 GPa, which is two orders of
magnitude smaller than the average 1.49 GPa obtained for the
northern gannet. One factor that may attribute to this differ-
ence is the humidity levels. MacLeod maintained a constant
humidity level of 60% throughout all his experiments. In
the present study, humidity levels were not controlled, but
were held during a dry winter season. Since low humidity
results in a higher elastic modulus [26,33], this could explain
why the elastic modulus is higher in this study compared to
MacLeod’s study [30]. Future experiments are necessary to
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test humidity effects on the elastic modulus using the non-
linear bending method presented in this paper.

In order to study the elastic coupling ofmultiple feathers in
an array, we use a similar nonlinear bendingmodel as used for
E-value calculation. In this case, we have a known E-value and
use displacements from experiments to compute the forces at
all points of every beam one at a time. Thus, we are able to
compute the forces at the base of each beam. As seen from
figure 15a, the net external force applied on the entire patch
is borne collectively by all feathers and thus the force experi-
enced on the skin beneath is distributed over a much larger
region due to the elastic coupling rather than being more
localized as would be expected without elastic coupling of
feathers. Thus, we can argue that the presence of feathers on
the gannet’s skin, particularly around the chest, is likely to
have a significant effect on spreading the impact force of
water over amuch larger area on the skin and in turnminimize
the pressure on the chest area, thereby protecting integument.
This is under the assumption that a point force arises due
to an edge effect at the air–water interface. For example, if a
rod of some radius larger than a feather impacts the feather
surface, there is pressure that is equal for all feathers within
the radius. But outside the radius, or edge, of the rod is
where the force begins to dissipate. This can hold true for
plunge-diving and many other cases. Such a force-spreading
phenomenon would also protect birds from various impacts
with solid objects, such as flying into branches, impact with
other birds, pecking/fighting, and failed landings on ground
and water. However, once a bird is completely submerged
underwater, there is no longer a point force, but an equal
distribution of pressure acting on the entire body of the bird.
An interesting future study is that the collective effect of
feathers might actually help maintain an optimal effective
stiffness—relatively light or relatively heavy loads do not
deform feathers too much—to maintain a specific shape that
maximizes trapped air in between the feather and skin,
thereby maximizing insulation.

It is worth mentioning that the present work in replicating
the elastic coupling in our experiments assumes equilibrium
conditions and hence all the force distribution results are sub-
jected to this limitation as well; while the actual bird-diving
process is a highly dynamic phenomenon. So, the actual
water impact forces are higher in contrast to the experimental
forces, but we expect a similar distribution pattern of forces on
the bird’s skin in nature as illustrated by our study which is
our major focus.
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