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A Nondestructive Technique for
the Evaluation of Thin Cylindrical
Shells’ Axial Buckling Capacity
The axial buckling capacity of a thin cylindrical shell depends on the shape and the size of
the imperfections that are present in it. Therefore, the prediction of the shells buckling
capacity is difficult, expensive, and time consuming, if not impossible, because the predic-
tion requires a priori knowledge about the imperfections. As a result, thin cylindrical shells
are designed conservatively using the knockdown factor approach that accommodates the
uncertainties associated with the imperfections that are present in the shells; almost all the
design codes follow this approach explicitly or implicitly. A novel procedure is proposed for
the accurate prediction of the axial buckling capacity of thin cylindrical shells without mea-
suring the imperfections and is based on the probing of the axially loaded shells. Compu-
tational and experimental implementation of the procedure yields accurate results when the
probing is done in location of highest imperfection amplitude. However, the procedure
overpredicts the capacity when the probing is done away from that point. This study dem-
onstrates the crucial role played by the probing location and shows that the prediction of
imperfect cylinders is possible if the probing is done at the proper location.
[DOI: 10.1115/1.4049806]
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1 Introduction
Thin cylindrical shells are widely used due to their structural effi-

ciency, ease of construction, and appeal to aesthetics. However, this
comes at a cost—they are highly sensitive to imperfections. The
presence of even a small imperfection [1–19] can reduce a shells’
axial buckling capacity significantly. Therefore, the presence of
imperfections induces an element of uncertainty. The reduction in
the shells’ axial buckling capacity depends on the shape and the
size of each imperfection, as well as their topological arrangement.
Thus, one requires an a priori knowledge about the imperfections to
make accurate failure predictions. Measuring all the imperfections,
however, is a difficult, expensive, and time consuming, thus making
the prediction of a shells’ capacity nontrivial, if not impossible.
Nearly all cylindrical structures couple a high degree of imperfec-

tion sensitivity with unknown underlying imperfections. Thin cylin-
drical shells are thus designed conservatively using the knockdown
factor approach; almost all the design codes follow this approach
explicitly or implicitly, e.g., NASA [20] and Eurocode [21].
Through these design rules, we have learnt to live with the
problem that has long been an obstacle for the efficient use of
thin shells. Recently, the quest for high-fidelity estimates of the
buckling capacity has regained significant attention due to the
renewed interest in space-flight and in thin soft material [22–29].
Indeed, a promising new framework based on the probing of
axially compressed cylinders has emerged for the evaluation of
the buckling capacity of thin cylindrical shells without complete
knowledge of the shell’s underlying imperfections: the stability

landscape [7,30–46]. However, this framework is still in the
infant state, and many issues have to be resolved, e.g., the role of
probing location, the influence of the imperfection’s size and
shape, and the impact of the interaction among imperfections.
Here, we explore some of these issues by combining numerical

analysis with experiments as a stepping stone toward the develop-
ment of a nondestructive technique for the evaluation of thin cylin-
drical shells buckling capacity. We address the issues of extracting
information from probe force–displacement curves and using this
information to predict the capacity. In addition, we investigate the
role of probing location, imperfections amplitude, and background
imperfections on the accuracy of the prediction.
First, we propose an algorithm to predict the buckling capacity

of thin shells; this algorithm is based on the feedback of probe
force–displacement curves of axially loaded shells. Then, the pro-
posed algorithm is computationally implemented on thin perfect
and imperfect shells (R/t≈ 286), and we find that it provides accu-
rate results. Next, we experimentally predict the capacity of
close-to-perfect shells and imperfect shells. To create the imperfect
shells, a novel experimental technique is developed for a syste-
matic introduction of geometrical imperfections of a set scale.
The experimental implementation of the algorithm gives an accu-
rate prediction for the high imperfection amplitudes, while for
low imperfection amplitudes, experiments fail to predict the capac-
ities. In all our experimental and computational studies, we probe in
the center of the preexisting dimple imperfection of the shells. The
location of the imperfection is crucial information that may not be
available for real structures. To study the impact of the location
of probing relative to the imperfection, we probe away from the
imperfection in the circumferential and axial direction. This
reveals that the location of probing affects the ability of the pro-
posed method to predict the buckling capacity of the shells. We
find that the probing is inferring only local information, and thus,
the prediction becomes less and less accurate as the probing is
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moving away from the imperfection. Overall, this study demon-
strates many aspects of the probing of axially loaded thin cylindrical
shells: (1) probing can be used to predict the buckling capacity of
shells containing a dimple imperfection, (2) the probing location
plays a crucial role in the accuracy of the prediction, and (3) a
framework can be developed for nondestructive experiments to
predict the buckling capacity of thin shells.

2 Description of the Procedure and Its Application on a
Perfect Cylindrical Shell
The proposed procedure takes advantage of the stability land-

scape of axially loaded shells. The method consists of three steps:
(1) shells are put under axial load Fa, (2) these axially loaded
shells are probed in radial direction at the location of a preexisting
imperfection, and (3) the peak probe force Fmax

p and the correspond-
ing axial load Fa are recorded and are used to predict the axial
capacity. There are two constraints on the axial load Fa: (1) Fa is
less than the axial capacity of the cylinders and (2) when axially
compressed cylinders are probed, there exist a peak in probe
force–displacement curves. The constraint on the probing is that
the probe displacementDp< 5t, where t is the thickness of cylinders.
The second constraint is based on the phenomenological observa-
tions from hundreds of computations and experiments that a peak
in the probing force will appear for probe displacements Dp< 5t.
Beyond that probe displacement, a peak in the probing force is
not likely to appear. In addition, probing beyond 5t could also
induce undesired plastic deformations, which have not yet been
quantified either computationally or experimentally. The three
steps of the procedure are iterated with increasing axial load Fa

till the predicted axial capacity Fpre converges. The convergence
criterion is |Fpre−Fa| < 0.1Fpre, where Fpre is the predicted capacity
and Fa is the largest axial load. We are using this convergence cri-
terion because it gives accurate predictions, any other criteria could
be used if that gives a good prediction.
Initially, the cylinder is compressed under axial load Fa= 0.5κPc,

where κ is the knockdown factor of the cylinder, which is an

empirical finding based the experiments performed in late sixties
[20], and Pc is the classical axial buckling capacity of the perfect
cylinder. For a cylindrical shell with radius R, thickness t,
Young’s modulus E, and Poisson’s ratio ν, the values of Pc and κ
[20] are represented as follows:

Pc =
2πEt2����������
3(1 − ν2)

√ (1)

κ = 1 − 0.901 1 − exp

����
R/t

√
16

( )( )
(2)

This initial value of Fa is less than half of the expected capacity
κPc (assuming the cylinder is imperfect) of the cylinder, and thus,
the first constraint on Fa is fulfilled. To enforce the second con-
straint on Fa, we probe the cylinder that is under axial load Fa=
0.5κPc. The probing is done at the location, where the amplitude
of imperfection is maximum, with the constraint Dp< 5t. If Fmax

p

exists in the probe force, then Fa and Fmax
p will be Fa,1 and Fmax

p,1 ,
the first data set for the axial force and peak probe force that is
used for the capacity prediction. If Fmax

p does not exist in the
probe force then Fa is increased by 10%, and the cylinder is
probed again at the same location. This iteration is continued till
we find an identifiable peak Fmax

p in probe force.
In the proposed procedure, a minimum of five pairs of {Fa; Fmax

p }
are needed for the capacity prediction. Once we have the first data
set {Fa,1; Fmax

p,1 }, we can find the next four data sets {Fa,2; Fmax
p,2 },

{Fa,3; Fmax
p,3 }, {Fa,4; Fmax

p,4 }, and {Fa,5; Fmax
p,5 } following Eq. (3).

Fa,i = Fa,i−1 + 0.05Fa,1 (3)

Fmax
p,i is the peak probe force of the cylinder that is axially loaded

under Fa,i. After having the five data sets, we predict the capacity of
the cylinder by quadratic curve fitting of these data sets. The pre-
dicted capacity Fpre is the value of Y-axis where the quadratic
curve intercepts it assuming Fa corresponds to Y-axis, and Fmax

p cor-
responds to X-axis. If the convergence criterion |Fpre−Fa| < 0.1Fpre

is satisfied, Fpre will be the capacity of the cylinder. Otherwise, a
new data set {Fa,i+1, Fmax

p,i+1} is added following Eq. (4).

Fa,i+1 = Fa,i + cFpre (4)

Fmax
p,i+1 is the peak probe force corresponds to Fa,i+1, and c is

a constant whose value depends on |Fpre−Fa|. The values of
c are 0.25, 0.20, 0.15, 0.10, and 0.05 for |Fpre−Fa| > 0.50Fpre,
|Fpre−Fa| > 0.40Fpre, |Fpre−Fa| > 0.30Fpre, |Fpre−Fa| > 0.20Fpre,

Table 1 Dimensions and material properties of aluminum mini
Coke cans (7.5 fl oz) used for the computational model

E (GPa) R (mm) ν t (μm) L (mm)

68.95 28.6 0.3 100 107

(a) (b)

Fig. 1 (a) Stability landscape, which is obtained by implementing the proposed procedure numerically, shown in the
three-dimensional phase space of axial load Fa, probe displacement Dp, and probe force Fp. (b) The axial load Fa
versus peak probe force Fmax

p data along with its quadratic regression curve. The predicted capacity Fpre, where
the quadratic curve intercepts Y-axis, of the cylinder is 2648.7 N, whereas the numerically obtained capacity of the
cylinder Fnum is 2584.7 N and is shown by the horizontal line.

051003-2 / Vol. 88, MAY 2021 Transactions of the ASME



and |Fpre−Fa| > 0.10Fpre, respectively. |Fpre−Fa| < 0.10Fpre is the
convergence criteria; the iteration stops at this point, and Fpre is
the predicted capacity of the cylinder.
To illustrate the proposed procedure, we apply this computation-

ally using finite element analysis (FEA) package ABAQUS [47] on a
perfect cylinder that models mini Coke cans (7.5 fl oz), made of alu-
minum. The dimensions and material properties of the Coke can are
presented in Table 1. The advantage of using cans is that they are
easily available for our experiments. The modeling technique
follows the one presented by Haynie et al. [48]. The mesh for the
models was created by user-written codes using S4R elements
with an element size of 0.91 mm, about 0.54

���
Rt

√
, in both axial

and circumferential directions. The boundary conditions at the
ends of the cylinder are applied using the same procedure as by
Haynie et al. [48] with rigid links, which connect the central node
to the nodes at the ends of the cylinder. Further, we simplified
our modeling assuming the cross sections of cans are circular
throughout the length, which is a slight deviation from the physical
cans. This does not affect our analysis as here the purpose is the
evaluation of the proposed procedure and not to emulate the exper-
iments exactly. For a perfect cylinder, probing can be done any-
where, as there is no imperfection. However, we probe in the
middle section of the cylinder to avoid any effects of boundaries.
For step 1 of the procedure, geometrically nonlinear static analysis
is used to put the cylinder under prescribed axial load, and for step
2, the arc-length-based Riks method [49] is used to probe the cylin-
der in the radial direction.
Figure 1(a) shows the stability landscape—a two-dimensional

surface in a three-dimensional phase space of axial load Fa, probe
displacement Dp, and probe force Fp— of the cylinder. This force
landscape is obtained by implementing the proposed procedure.
The prediction converges after 14 iterations, and thus, 14 probe
force–displacement curves are shown. In Fig. 1(b), the axial load
Fa versus peak probe force Fmax

p is shown along with their quadratic
regression curve (polynomial fit of order 2). The predicted capacity
the cylinder, where the quadratic curve intercepts the Y axis, Fpre is
2648.7 N, whereas the numerically obtained capacity (using FEA)
of the cylinder Fnum is 2584.7 N and shown in Fig. 1(b) by the hor-
izontal line.
The percentage difference between the Fpre and Fnum is 2.5%

(|Fnum−Fpre|/Fnum × 100); this shows that the proposed procedure
is predicting the capacity of a perfect cylinder accurately.
However, the real challenge of the procedure is when it is used
for imperfect cylinders. This is the subject of Sec. 3.

3 Application of the Procedure on Imperfect
Cylindrical Shells
To apply the proposed procedure on imperfect cylinders, we

induce a local dimple imperfection in the middle of the perfect cyl-
inder. The dimple imperfection is modeled as a two-dimensional
normal distribution function following Gerasimidis et al. [50] and
Yadav and Gerasimidis [18]. The mathematical description of the
dimple imperfection is given as follows:

w = −δe−(x−x0/L1)
2
e−(θ−θ0/θ1)

2

(5)

where w represents the deviation from the original position in the
radial direction, δ is the amplitude of the imperfection, x and θ
are the axial and circumferential coordinates (x0 and θ0, respec-
tively) are the center of the dimple whose values are chosen such
that the dimple is located in the middle section of the cylinder. L1
and θ1 are the parameters that dictate the length (in the axial direc-
tion) and the width (in the circumferential direction) of the dimple.
In this study, the value of L1 and θ1 are 0.55λ and 0.55λ/R [18],
where λ is the half-wavelength of classical axisymmetric buckling
mode of the cylindrical shell under axial load, and its value is
given by Eq. (6) [51]. This dimple is introduced in the perfect cyl-
inder whose dimensions are given in Table 1. Figure 2 shows the

dimple-like imperfect cylinder along with axial load Fa and probe
force Fp that is applied radially inward in the middle of the dimple.

λ = π

��������������
Rt������������

12(1 − ν2)
√

√
(6)

We apply the proposed procedure computationally using FEA
package ABAQUS [47] on the imperfect cylinder. For step 2 of the
procedure, the probing is done in the middle of the dimple. The
output of the procedure for imperfection amplitude δ= 0.1t is
shown in Fig. 3. Fig. 3(a) shows the stability landscape, and
Fig. 3(b) shows the axial load Fa and corresponding peak probe
force Fmax

p along with the quadratic curve fitting (polynomial fit
of order 2). The predicted capacity of the cylinder Fpre is 2185.5
N, which is the value of Y axis, where the quadratic curve intercepts
it in Fig. 3(b). The numerically obtained capacity of the cylinder
Fnum, obtained by finite element analysis of the cylinder, is
2183.0 N that is only 0.11% less than Fpre. Again, the proposed pro-
cedure is accurately predicting the capacity of the imperfect cylin-
der with imperfection amplitude δ= 0.1t.
The prediction procedure is also implemented on imperfect cyl-

inders with higher imperfection amplitude. In Fig. 4, the predicted
capacities and the actual capacities of imperfect cylinders are shown
against the amplitude of the imperfections. Note that the procedure
is predicting the capacity of the imperfect cylinders accurately for
higher imperfection amplitudes (0 < δ≤ 2t). We again emphasize
that in all these computations, the probing is done in the middle
of the dimple. This location is not known prior for real structures.
The importance and implications of this location will be discussed
in Sec. 6 along with the effect of the probing location, and the
robustness of the procedure, but before that, we present the exper-
imental implementation of the procedure on mini Coke cans.

4 Experiments on Cylindrical Shells

Our custom-made bi-axial mechanical tester is similar to that
detailed in the study by Virot et al. [34] and shown schematically
in Fig. 5(a). It is designed to study the stability and strength of com-
mercial cylindrical shells (aluminum Coke cans, 7.5 fl oz). A verti-
cal actuator, equipped with a load cell (Futek LCB200), applies an
axial load Fa to the inputted sample. Test samples are placed upright
between two platens, which can be rotated, even under axial load.
To the side, a horizontal linear actuator, also equipped with a load-

Fig. 2 Imperfect cylinder, and its cross section in the middle.
The imperfection is modeled as a dimple in the shape of a two-
dimensional normal distribution density function [18,50]. The
dimple is located in the middle section, and the probing is
done in the center of the dimple. The amplitude of the dimple is
scaled up so that it is visible in the image.
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cell (Futek LSB200), serves as the poker probe. An aluminum
marble of diameter 4.75mm is rigidly attached to the probe’s tip
and can be raised or lowered vertically along the surface of the
shell. Thus, the entire surface of the shell is accessible to the
probe. For probing, vertical and horizontal loading are displacement
controlled, and horizontal poking is performed under a constant ver-
tical displacement; the axial load is stable to within 2% during
poking. Data acquisition and motor controls are accomplished
through a custom MATLAB program.
Mini aluminum Coke cans (7.5 fl oz) are used as test sam-

ples. These are cylindrical shells of radius R= 28.6mm, thickness
t= 104± 4 μm (radius-to-thickness ratio R/t= 274), and height
L = 107mm [36]. A Coke can contains many inherent geometrical
imperfections of varying shapes and size, likely from the commer-
cial manufacturing and shipping process [35]. Hence, this system
differs from those previously studied by having uncontrolled
background imperfections [23–26]. To introduce a controlled geo-
metrical imperfection on the surface of a can, a custom “dimple-
maker” is used. The setup consists of an aluminum marble of dia-
meter 3.15mm with a load-cell (Futek LSB200), which is attached
to a vertical linear actuator (Fig. 5(b)).

The force on the indenting aluminum marble FI increases mono-
tonically as it is pushed into the can’s surface, as shown for a typical
example in Fig. 6 (Inset). The indenter is advanced to a maximum
displacement Δ and then retracted. As the indenter is removed, the
force decreases monotonically and a hysteresis is observed in the
force–displacement curve. We define the displacement at which
the FI zeros and the indenter detaches as the depth of the imparted
dimple δ. The dimple’s depth depends on the maximum indenter
displacement (Δ), thus allowing a systematic introduction of geo-
metrical imperfections of a set scale, as shown in Fig. 6. Although
only the dimple’s depth, rather than the precise shape, is measured,
their geometric profile is likely similar to those recently computa-
tionally explored by Gerasimidis and Hutchinson [22]. As a final
note, it is critical that all dimpling be done on unopened, pressurized
Coke cans to confine plastic deformations to a small localized
region around the marble. Once a dimple is made, the can is depres-
surized and emptied of its internal contents. Figure 6 indicates that

(a) (b)

Fig. 3 (a) Stability landscape, which is obtained by implementing the proposed procedure numerically, shown in the
three-dimensional phase space of axial load Fa, probe displacement Dp, and probe force Fp. (b) The axial load Fa
versus peak probe force Fmax

p data along with its quadratic regression curve. The predicted capacity Fpre, where
the quadratic curve intercepts Y axis, of the cylinder is 2185.5 N, whereas the numerically obtained capacity of the
cylinder Fnum is 2183.0 N and is shown by the horizontal line.

Fig. 4 Numerically obtained capacity Fnum (stars) and predicted
capacity Fpre (circles) of the cylinders. Fnum is calculated by the
finite element analysis, while Fpre is found by implementing the
proposed procedure. The predictions are accurate as the differ-
ences between Fnum and Fpre are very small for all the imperfect
cylinders that are considered (δ≤2t).

(a) (b)

Fig. 5 (a) Diagram of the experimental setup. An empty soda
can is placed between the two platens. The platens apply onto
the can an axial load Fa, whose magnitude is measured via an
attached load cell. Once an axial load is applied, a 4.75mm ball
attached to a load-cell and linear actuator acts as a lateral
probe, measuring forces (Fp), and displacements (Dp) while
probing from the side. The probe can be moved vertically to
any arbitrary height, and the shell can be rotated to any arbitrary
angle. (b) Diagram of the experimental setup for the imparting of
imperfections. A 3.15mm ball is pushed into an unopened pres-
surized Coke can to create a permanent indentation along the
surface with a specified depth (δ). By measuring the force (FI)
and displacement (DI) of the indenter as it is pushed into an uno-
pened, pressurised can we can place nearly identical imperfec-
tionsacross many different cans.

051003-4 / Vol. 88, MAY 2021 Transactions of the ASME



indentation below Δ< 0.2mm is entirely elastic, as opposed to that
of depressurized cans, which exhibit elastic deformation for inden-
tation displacements on the order of ≈1mm [34]. Repeatedly
probing a depressurized shell hundreds of times does not appear
to change the axial capacity of the shell or the topography of the sta-
bility landscape’s ridge. However, further experiments—perhaps
using direct imaging of the can’s surface—are required to precisely
determine what plastic damage might be caused by repeated small
indentation probing.
Introducing a dimple provides a well-defined location to probe.

As such, the probe pokes at the center of the dimple to extrapolate
the can’s maximum axial capacity. Specifically, a simple ridge-
tracking protocol is implemented, measuring the peak probe force
(Fmax

p ) at various axial loads (Fa) and extrapolating to Fmax
p = 0 to

identify the catastrophic axial load (Fig. 7(b)) [36]. The ridge-

tracking procedure used is similar to that detailed in Sec. 2. In
the simulations, a quadratic function was fit to the numerical data
and extrapolated to generate a prediction for the failure load;
however, in the experiments, small measurement errors extrapo-
lated by a quadratic fit may result in large fluctuations in the early-
point prediction. When calculating the next axial load at which to
probe, a conservative approach is beneficial to avoid accidentally
overloading the can. As such, a linear fit using the last five measured
loads, which proved more robust to experimental noise, was used,
as shown in Fig. 7.
For larger dimples, whose depth are δ≥ 1.5t, predictions predom-

inantly work to within 0.5% of the actual failure load. For cans with
smaller geometrical imperfections, our protocol consistently over-
predicts the strength of the sample. The mean axial capacity for
cans with a larger dimple (δ> 1.25t) is 1008 N, whereas cans with
a smaller dimple (δ< 1.25t) have an average capacity of 1210 N,
which is consistent with the numerical simulations (Fig. 8).
Although a larger sized dimple decreases the average strength of
our shells, the distribution of loads appears to remain similarly
broad. Dimples with nearly identical depths still exhibit a wide
range of failure loads, suggesting that the imparted dimple com-
bined with the existing background defects of the system determine
the can’s strength. In contrast to system’s where a single defect
dominates [23–26].

5 Application of the Procedure on the Imperfect
Cylindrical Shells Having Background Imperfections
In the experiment, with higher imperfection amplitudes (δ≥

1.5t), the proposed procedure predicts the capacity accurately
when probing is done in the middle of the dimple. However, the
procedure always overpredicts the capacity when the created
dimple has a small amplitude (δ≤ 1.5t). This overprediction is
due to the presence of background imperfections, which are not
created artificially but were already in the Coke cans. Consequently,
for the small amplitude dimple, the prediction overestimates the
capacity, whereas for the high amplitude dimple, the prediction is
accurate.
To explore the phenomenon of dominating imperfection further,

we simulate the can having two dimples, as shown in Fig. 9. The
amplitudes are of the order of the thickness of the cylinder.
Figure 10(a) shows the actual capacities, found by FEA analysis,
of this can with varying background and dimple imperfections.
Note that the capacity of the can depends on the imperfection that
has higher amplitude. For example, when the background is zero,

Fig. 6 Prescribed imperfection amplitude (δ), normalized by the
can’s thickness (t), versus the maximum displacement the
indenter was pushed into the unopened, pressurized can’s
surface (Δ). Inset shows a typical example of a force–displace-
ment curve during indentation of a can whose final imperfection
is δ≈2t. Note that the indenter is pushed into (red) and removed
from (blue) the surface of an unopened, pressurized can
(Fig. 5(b)). (Color version online.)

(a) (b)

Fig. 7 (a) Experimentally obtained stability landscape constructed using the measured axial loads Fa, probe dis-
placements Dp, and probe forces Fp. This specific can has an imperfection amplitude δ=2.081t. (b) The axial
loads Fa versus corresponding peak probe forces Fmax

p , and a linear extrapolation between these two parameters.
The predicted capacity, where the linear curve intercepts the y-axis is 1054.6 N, whereas the actual capacity of the
soda can is 1053.1 N. Hence, the error for this prediction is 0.14%.
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the capacity depends on the dimple imperfection amplitude (X-axis)
as the capacity is reduced with an increase in the dimple imperfec-
tion amplitude. For the background imperfection 0.2t, the curve is
flat till the dimple imperfection amplitude is less than 0.2t, indicat-
ing that the capacity is decided by the background imperfection.
Similarly, for the background imperfection 0.5t, the curve is flat
until the background imperfection is less than 0.5t. Furthermore,
for the background imperfection 2.0t, the curve is always flat, and
the variation of dimple imperfection amplitude does not affect the
capacity as it is, always, less than 2.0t. It is clear from this analysis
that the capacity of cylinders is decided by the imperfection that has

the highest imperfection amplitude. Here, we use a simple model for
the background imperfection; in reality, background imperfections
are complex. Nevertheless, this simple model explains the
concept of dominating imperfection.
Figure 10(b) shows the predicted capacity of the can; the pre-

dicted capacities are almost the same for all the cases irrespective
to the background imperfection and follow the actual capacity of
the can without the background imperfection of Fig. 10(a). The
probing can only gauge the imperfections that are near to the
point of probing. Thus, the predicted capacity is accurate only if
there is no other dominating imperfection away from the point of
probing. The predicted capacity of Fig. 10(b) is accurate if the back-
ground imperfection amplitude is less than the dimple imperfection
amplitude. Otherwise, the prediction overestimates the capacity.
For example, when the background imperfection is 0.2t and
dimple imperfection is 0.5t, the predicted capacity (Fig. 10(b))
and actual capacity (Fig. 10(a)) are the same. But, when the

Fig. 8 Experimental predictions for different imperfection
amplitudes. Each datum represents an individual can for which
the axial capacity was predicted, via ridge tracking (see Fig. 7).
The data have been separated by the amplitudes of the imperfec-
tions imparted onto each individual coke can. Failed predictions
consistently occur for small amplitudes (δ<1.25t), indicating that
a minimum threshold exists for an imperfection to dominate over
existing background defects. Successful predictions, over-
whelming occur with larger amplitude imperfections (δ>1.25t).
However, some large imperfections can lead to an unsuccessful
prediction, emphasizing the importance that background defects
have on a shell’s load bearing capacity.

Fig. 9 Rendering of the model can with two dimple imperfec-
tions along with axial load (Fa) and probe force (Fp). The
dimples are modeled as a two-dimensional normal distribution
density function whose value is exponentially small well away
from the dimple center [18,50]. The dimples are located in the
middle section of the cylinder and dramatically opposite direc-
tion. We refer to the first dimple as the dimple imperfection and
to the second dimple as background imperfection. The probing
is done in the center of the dimple imperfection. The amplitude
of the dimples is scaled up so the dimples are visible; in our anal-
yses, the amplitudes are of the order of the thickness of the can.

(a) (b)

Fig. 10 (a) Numerically obtained capacity Fnum of the can with background imperfection as a function of the amplitude of dimple
imperfection that varies from 0 to 2:0t. (b) Predicted capacities Fpre of the can with background imperfection. For the prediction,
probing is done in the middle of the dimple. The predicted capacity of Fpre is accurate if the background imperfection amplitude is
less than the dimple imperfection amplitude. Otherwise, the prediction overestimates the capacity.

051003-6 / Vol. 88, MAY 2021 Transactions of the ASME



background imperfection is 0.5t and dimple imperfection is 0.2t, the
predicted capacity (Fig. 10(b)) is more than the actual capacity
(Fig. 10(a)). The same pattern is observed for all the cases. This
simulation is consistent with the experimental results showing
that the prediction is accurate when the created dimple has a high
amplitude. For these cases, it is more probable that the dimple
imperfection will be the dominating one. As a result, the chances
of an accurate prediction increase, as also observed in the experi-
ments. This observation reflects the crucial role played by the loca-
tion of probing. To further investigate this issue, we move the
location of the probing away from the imperfection in the axial
and circumferential directions. The results are presented in Sec. 6.

6 Effect of the Location of Probing Relative to the
Imperfections
In Sec. 5, it has been demonstrated that the prediction of the

buckling capacity of thin cylinders is accurate if the probing is
done at the dominating imperfection. In this section, we further
explore the issue of the probing location, both computationally
and experimentally, by moving the probing location away from
the imperfection in the axial and in the circumferential directions.

6.1 Computational Study. We create a dimple-like imperfect
cylinder similar to the one described in Sec. 3 and shown in Fig. 2.
First, we implement the proposed procedure of Sec. 2, but we probe
away from the middle of the dimple. We showed in Sec. 3 how
probing in the center of the dimple can provide accurate predictions
of failure for the cylinder. Here, we will show that probing around
the dominant imperfection (the imperfection that dictates the capac-
ity of thin cylinders) consistently introduces a length scale at which
probing proves ineffective. Having asserted that now we address a
more fundamental question: Is it possible to predict the capacity of
thin cylinders by probing away from the dominant imperfection? To
answer this question, the axially loaded imperfect cylinder is probed
away from the imperfection, and probing data are used to predict the
capacity.
Figure 11 shows the plots of axial load Fa against the peak probe

force Fmax
p when the probing is done away from the middle of the

imperfection along the circumferential direction, for imperfection
amplitudes δ= 1.0t (Fig. 11(a)) and 2.0t (Fig. 11(b)). We chose
seven locations along the circumferential direction, i.e., θ= 0 deg,
3.7 deg, 10 deg, 30 deg, 45 deg, 90 deg, 135 deg, and 180 deg,

where θ is the angular distant between the probing location and
the middle of the imperfection. θ= 0 deg represents probing,
which is done in the middle of the imperfection that yields accurate
prediction. Figure 11 also shows the plot for the perfect cylinder.
For δ= 1.0t, the curves for 30 deg, 45 deg, 90 deg, 135 deg, and

180 deg follow the curve of the perfect cylinder; and the probing
fails to recognize the presence of the imperfection. Consequently,
they predict the capacity of a perfect cylinder instead of the actual
cylinder. These results indicate that the probing fails to recognize
the presence of imperfection if it is done away from the region of
influence of the imperfection. Here, we use the term “region of
influence” to describe a region near the imperfection such that if
the probing is done outside this region, the presence of the imper-
fection is undetectable. For example, 30 deg, 45 deg, 90 deg, 135
deg, and 180 deg are outside from the region of influence in
Fig. 11(a). While for θ= 3.7 deg and θ= 10 deg, the Fa and Fmax

p
plots match, although not exactly, the plot of the imperfect cylinder
with θ= 0 deg. This means that when θ= 3.7 deg or θ= 10 deg, the
probing location lies in the region of influence of the imperfection,
and thus, the predicted value is near the exact value of the imperfect
cylinder. It should be noted that when the probing is in the region of
influence, this does not necessarily indicates that the prediction will
be accurate; instead, it only means that the imperfection has some
influence on the Fa and Fmax

p plot. For imperfection amplitude δ=
2.0t, a similar pattern is emerged as shown in Fig. 11(b).
Figure 12 shows the axial load Fa against the peak probe force

Fmax
p when the probing is done away from the middle of the

imperfection along the axial direction, for the imperfection ampli-
tude δ= 1.0t and 2.0t. We chose five locations along the axial direc-
tion, i.e., x= 0, 2λ, 4λ, 6λ, and 8λ, where x is the distance between
the probing location and the middle of dimple, and λ is the classical
axisymmetric buckle half-wavelength for cylindrical shells under
axial load, as given in Eq. (6). x= 0 represents probing that is
done in the middle of the imperfection, which yields accurate pre-
diction. Figure 12 also shows the plot for the perfect cylinder.
For the four cases, x= 2λ, 4λ, 6λ, and 8λ, probing behavior can be

divided in two distinctive regions depending on the axial load Fa.
The first region is when the probing is unable to detect the imper-
fection for small axial loads Fa, we call it region 1. For region 1,
Fa and Fmax

p curves of x= 2λ, 4λ, 6λ, and 8λ follow the curve of
the perfect cylinder as shown in Fig. 12. The second region is
when the imperfection influence the probing behavior for axial
loads Fa close to cylinder’s capacity, we call it region 2. For
region 2, Fa and Fmax

p curves of x= 2λ, 4λ, 6λ, and 8λ bent

(a) (b)

Fig. 11 Numerically obtained axial load Fa versus peak probe force Fmax
p for the probing locations at θ=0 deg, 3.7 deg, 10 deg, 30

deg, 45 deg, 90 deg, 135 deg, and 180 deg relative to the middle of imperfection along the circumferential direction, for imperfec-
tion amplitudes (a) δ=1.0t and (b) δ=2.0t. The curves shown are not algorithmic fits but rather lines drawn between each point,
solely for visualization purposes. The curve for the perfect cylinder is also shown. The imperfection has no influence on the
probing for θ=30 deg, θ=45 deg, 90 deg, 135 deg, and 180 deg, and thus, the predictions are inaccurate.

Journal of Applied Mechanics MAY 2021, Vol. 88 / 051003-7



sharply as shown in Fig. 12, and capacity can be predicted. Practi-
cally, this sharp bend happens close to the cylinder’s capacity,
which makes the cylinder under the axial load Fa unstable.
Figure 13 shows the three-dimensional phase space of axial load

Fa, probe displacement Dp, and probe force Fp corresponding to δ=
2.0t and x= 4λ. For the last three plots corresponds to higher Fa, the
probe returns before reaching the peak; this is a kind of instability.
We cannot probe the cylinder under axial load that is near to the
capacity of the imperfect cylinder. It also explains the reason
behind the bending of the Fa and Fmax

p plots in region 2; this
bending is happening because the Fmax

p is not the peak probe
force but the maximum probe force that can be achieved by
probing at the higher Fa. As a result, the data in region 2 cannot
be used for the prediction.
From these analyses, it is clear that the probing location relative

to the imperfection is crucial information, and the prediction would
be inaccurate if the probing is away from the imperfection. These
analyses also reveal some interesting phenomena: (1) there exists
a region of influence of the imperfection, and if probing is in this
region, the imperfection affects the probing profile, otherwise, the
probing profile is the same as for the perfect cylinder. The area of

this region of influence depends on the imperfection amplitude
and shape. (2) If the probing is done near the axial capacity of the
cylinders, the probing might cause the failure of the cylinders.
Thus, some safety margin between the axial load and the capacity
must be maintained. Our experiments also support these results,
which are described in Sec. 6.2.

6.2 Experimental Study. Simulations reveal the existence of
a “region of influence” in which the stability landscape is modified
by the presence of the dimple. Analogous to the simulations, we
experimentally probe the vicinity of the dimple imperfection, gen-
erating landscapes at various locations. Initially, the center of the
dimple is probed before moving to other predetermined locations

(a) (b)

Fig. 12 Numerically obtained axial load Fa versus peak probe force Fmax
p for the probing locations at x=0, 2λ, 4λ, 6λ, and 8λ relative

to the middle of imperfection along the axial direction, for imperfection amplitudes (a) δ=1.0t and (b) δ=2.0t. The curves shown are
not algorithmic fits but rather lines drawn between each point, solely for visualization purposes. The curve for the perfect cylinder is
also shown. The imperfection has no influence on the probing for x=2λ, 4λ, 6λ, and 8λ, and thus, the predictions are inaccurate.

Fig. 13 Numerically obtained stability landscape. A three-
dimensional phase space of axial load Fa, probe displacement
Dp, and probe force Fp corresponds to δ=2.0t, and x=4λ. For
the three curves corresponding to higher axial loads Fa, the
probe returns before reaching the peak. This is a kind of instabil-
ity, and thus, we cannot probe cylinders under axial loads that
are near to the capacity of the cylinders.

Fig. 14 Experimentally obtained axial loads Fa and correspond-
ing peak probe forces Fmax

p for the probing locations at θ=0 deg,
4 deg, 8 deg, and 12 deg relative to the middle of imperfection
along the circumferential direction, for imperfection amplitude
δ=2t. The curves shown are not algorithmic fits but rather
lines drawn between each point, solely for visualization pur-
poses. The probing fails to recognize the presence of the imper-
fection for θ >

≈
8 deg and thus reverts to the prediction of a

perfect shell.
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axially and circumferentially. At locations near the boundary of the
region of influence, the axial loads are restricted to prevent
probe-induced catastrophic buckling. Overall, the experimental
observations are consistent with those obtained via finite element
simulations, showing qualitatively identical behavior.
The experimental results show a region in both the circumferen-

tial (Fig. 14) and axial directions (Fig. 15) extending several centi-
meters from the center of the dimple. Axially, the size of this region
is a function of the applied axial load. For example, at 2λ, there is a
discontinuity in the slope of the peak probe loads at ≈800N. For
loads higher than 800N, the region of influence expands to
include the probing location, leading to an accurate capacity predic-
tion. Simulations show similar inflections, even for the furthest of
axial locations (Fig. 12), but only at loads extraordinarily close to

shell’s capacity. Notably, the slope of the peak probe forces
always appears continuous in our circumferential data (Fig. 14).
In other words, these experiments do not exhibit a growth in the
region of influence for the circumferential direction, but further
experiments are necessary to confirm this.
As the axial load increases, the region of influence expands

axially, and a new instability is experimentally observed. At axial
locations far from the dimple (x> 2λ), a probe-mediated buckling
event may destroy the sample (Fig. 16). This failure is violent,
sudden, and catastrophic, occurring before the expected peak
probe force, based on previous points along the landscape’s ridge,
and often 5–10% below the shell’s predicted capacity. Following
such poker-mediated failure, the surface of the shell consistently
exhibits a diamond-shaped buckle centered at the dimple. These dis-
continuities have also been observed when probing undimpled,
normal Coke cans at high loads (>900 N) [34–36].

7 Conclusions
We have proposed a nondestructive procedure to predict the

buckling capacity of thin cylindrical shells. This procedure is imple-
mented computationally on cylindrical shells and experimentally on
mini Coke cans. For a perfect shell, computational implementation
of the procedure predicts accurate results. The percentage difference
between the predicted capacity Fpre and numerically obtained
capacity Fnum is 2.5% (|Fnum−Fpre|/Fnum× 100); this shows that
the proposed procedure is predicting the capacity of a perfect cylin-
der accurately. For the imperfect can, the computational implemen-
tation yields accurate results when the probing is done in the middle
of the imperfection. The percentage difference between the Fpre and
Fnum is 0.11% for imperfection amplitude δ= 0.1t. For other imper-
fection amplitudes we also had very accurate predictions. However,
the procedure overpredicts the capacity of the cans when the
probing is done away from the imperfection; the probing fails to
recognize the presence of imperfection and the predicted capacity
is near to the capacity of the perfect can instead of imperfect one.
This demonstrates the crucial role of probing location. Another sig-
nificant finding is the phenomenon of dominating imperfection: if
more than one imperfection is present in the cylinder, the capacity
is dictated by the dominating imperfection.
Similar predictive success is achieved in the experimental results.

By imparting a dimple onto a commercial Coke can, whose preex-
isting defects are unknown, one can extract a stability landscape by
probing at or within the near vicinity of the dimple. For dimple’s
with imperfection amplitudes ≥1.5t, the features of the stability
landscape can be extrapolated to accurately characterize the
failure properties of the shell. Probing around a dimple reveals
stable and unstable regions. In the stable regions, the ridge of the
landscape varies based on location, but remains capable of predict-
ing the shell’s failure properties. In the unstable regions, the probe
can induce catastrophic failure in the shell.
Both computational and experimental results suggest that the pre-

diction of the strength of imperfect cylinders is possible if the
probing is done at the proper location. Although finding the
proper probing location in a real cylinder is a challenge. Neverthe-
less, this study gives hope that a framework can be developed for
nondestructive experiments to predict the buckling capacity of
thin shells.
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Fig. 15 Experimentally obtained axial loads Fa and correspond-
ing peak probe forces Fmax
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Fig. 16 Experimentally obtained stability landscape generated
for a δ=2t dimple at x=8λ. Probing at the center of the dimple
provided a predicted capacity of 1163.8 N. However, at a axial
height of 8λ, a probe-mediated buckling occurs at 1101.0 N,
expressed as a sudden drop in Fp. This behavior can be observed
when probing at axial distances greater than 3λ.
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